A POSSIBLE CASE IN THE THEORETICAL
DESCRIPTION OF THE RELATION

BETWEEN THE STRESSES AND DEFORMATIONS
OF AN ELASTOPLASTIC-CREEP MATERIAL

V. A. Shlyapin ' UDC 539.37

In constructing the differential equation for stresses and deformations andtheir rates, itispro-
posed to use the nonlinear stress-deformation equations in the form of a quadratic parabola,
when the loadings are instantaneous or very slow. Relaxation curves and curvesofthe creep
and rate of creep of an elastoplastic material with nonlinear creep are obtained.

The differential equations for the stresses and deformations for materials with creep properties are
usually assumed to be linear when the loading is instantaneous or very slow. Thus, for a Kelvin body

0 416 = He 4 1E¢ 1)

Assuming the g—¢ relation to be nonlinear for instantaneous or very protracted loading, we can ex-
press the changes in the moduli of elasticity as

E=E(1 —ae), H =H(1—Dbe
Then Eq. (1) can be written as
04w = He (1 — be)4-71EE (1 — ag) (2)

When loading is very rapid, we can neglect the stresses and deformations ¢ and £ by comparison with
their rates ¢, £, and Eq. 2) becomes

6= E: (1 —ag)
The term ¢ in the parentheses cannot be ignored by comparison with unity. At a constant loading rate
o=V,
v = E& (1 — ae)
Integrating, we have
vt=Ee(t — Y, ag), or o =FEs(l—1;ag

This is the equation for a parabola. Denoting the coordinates of the vertex by g, (the greatest pos-
sible stress, or "yield point") and g,=1/a (the deformation when the yield point is reached, or the deforma-
tion at which failure occurs), we obtain an equation for the stresses and deformations when loading is instan-
taneous in the form

6= Ee(l — e/ 8, 8)

When loading is very slow, the rates ¢, £ in (2) can be ignored in comparison with ¢, . Denoting the
coordinates of the vertex of the parabola in this case by g%, ¢*=b/2, we have

6= He(l—1Y,¢e/¢e*) @)
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Equations (3) and (4) are shown in Fig. 1 for the case where g*<¢,. In general, we can have gx=¢ "
also, and even g*>g,, but in all cases we must have E = H, which follows from the essential nature of the
concepts of instantaneous and protracted moduli.

The differential equation (2) finally has the form
c+r&=Hs(1+%%)+rEé(1~f:) 65)
Iet us apply an instantaneous stress ¢y. Then, from (3), the deformation is
go=¢,(1— VT—00/5g) =20,E1(t — VI—=5sf0,)
This deformation hag elastic £° =¢y/E and plastic eP=g;—¢® components.
If we now keep the deformation ¢, constant, then £ =0, and from (5) we have the equation

0+ 15 = Heg (1 — s./?s*)
Solving it, we obtain the relaxation equation

6= Heo (1 _—2—2%—) + [Eeo'(1 ——;Ti)—Hso<1 — ﬂ e
This is the usual relaxation equation for a Kelvin body [1, 2].

If we keep the stress ¢, constant, then g=0, and from (5) we have

Ga=H3(1~-§:—,,')+rEé(l——;:) (6)
The solution of this equation has the following form:

For gy >o*

tEe* 0(e0) | 21 (ey) M (&)  m(eo)
t="He, [h‘ 0 T @ (aYCth“ar°tg~ﬁ—>}
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For o <o*

tEe* O(c0)  2n(ey) neE " (&0) }
t= e, [ln 8@ i (Arth — Arth—3— T )
2 2e , -
e(s)=(—;i—)—a*+c*, N@) = —1, 0=Vajo—1
FOr 0'0=O'*
2t1Ee* [g, —g* € — & g% — gy
=" (\:*—a"_s*—-s +1n 8*—B>

The creep curves are shown in Fig. 2 (fore ,, £, , 0., o*ken from Fig. 1).

3
The curves 1, 2, 3, 4, 5 correspond to gy=1.4 g*, 1.1 g%, 1.02 g%, g*, 0.75 g*.

For ¢y =¢* the deformations tend asymptotically to the following value, defined by (4), as t—>c:

sm=s*(1~]/ - c*)ﬁ 25*(1_

Failure does not occur. When ¢;>¢*, after a longer or shorter time interval the deformations reach
the value g, and the material fails, In accordance with this we can identify g* with the concept of the long-
term (protracted) resistance limit.

In all cases when ¢ > ¢g* the moment of failure is when the deformation reaches the value ¢,. However,
as shown later, the moment of failure can be analyzed differently.

The rate of creep deformation is defined from (6) as

Heue* 0(g) ()

' E=TE e, —e

Graphs of the change in the rate of deformation are given in Fig. 3. Curves 1, 2, 3, 4, 5 correspond
to gg=0.75 g%, g%, 1.02 g%, 1.1 g%, 1.4 g*. When g, =c¢*, the rate of deformation falls from its initial value
g9 to zero when e =¢g,.

When g, >o*, the rate of deformation first decreases and then, when some critical deformation £° is

reached, begins to increase. The critical deformation can be defined from the minimum of Eq. (7):

VTR

The curve joining the critical values ¢° is shown in Figs. 1, 2, and 3 by a dash-dotted line.

For stresses from gy, corresponding to where ¢° and ¢, coincide, onwards, the deformation increases
continuously from the onset of creep to the point of failure. At the moment of failure, when the limiting de-
formation ¢4 is reached, the rate of deformation tends to infinity.

Since in the material tests the rate of deformation is not infinite at the moment of failure, but has a
very large, though finite, value, after the moment of failure we can assume that the rate of deformation
reaches a particular large value ¢,. The "yield point" is not g*, but the stress gy, <o 4 corresponding tog,
(Fig. 1), The limiting deformation, the deformation at failure, is assumed to be g4, corresponding to the
assumed limiting rate and depending on the initial stress ¢;. The curve of gy, against gy, for some large
rate of deformation ¢, is shown in Fig. 1 by a dashed line.

We can also assume that the yield point is the point at which the rate of deformation £, starts to in-
crease [2].

The creep and the rate of deformation curves obtained above (Figs. 2 and 3) do not contain segments
where creep is established or the rate is constant. But the curvature of the creep lines when ¢ is just
greater than ¢* in the region near the point of inflection of £° is very small and the deviation from a linear
relation is not great. The graph giving the rate of deformation as a function of the time (Fig. 4) shows
(curves 1, 2, 3 correspond to gy=1.4 g%, 1.1 g*, 1.02 g*), that when ¢, is slightly larger than ¢g*, the rate
of deformation is virtually constant over a long time.
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