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In cons t ruc t ing  the d i f fe ren t i a l  equat ion for  s t r e s s e s  and deformat ions  and the i r  r a t es ,  it i s  p r o -  
posed  to use  the nonl inear  s t r e s s - d e f o r m a t i o n  equations in the fo rm of a quadra t ic  pa rabo la ,  
when the loadings  a r e  ins tantaneous  o r  v e r y  slow. Relaxat ion cu rves  and curves  of the c r e e p  
and ra te  of c r e e p  of an e l a s t o p l a s t i c  m a t e r i a l  with nonl inear  c r eep  a r e  obtained.  

The d i f fe ren t ia l  equat ions  for  the s t r e s s e s  and de format ions  for  m a t e r i a l s  with c r e e p  p r o p e r t i e s  a r e  
usua l ly  a s s u m e d  to be l i n e a r  when the loading is  ins tantaneous  or  very  slow. Thus, for  a Kelvin body 

+ ~ = ~e + ~e~ (I) 

Assuming  the a - 8  re la t ion  to be nonl inear  fo r  ins tantaneous  o r  ve ry  p r o t r a c t e d  loading, we can ex-  
p r e s s  the changes in the moduli  of e l a s t i c i t y  as 

E '  ~ E ( i  - - a e ) ,  H '  = H ( t - -  be) 

Then Eq. (1) can be wr i t t en  as  

When loading is  v e r y  rapid,  we can neglec t  the s t r e s s e s  and de format ions  ~ and e by c om pa r i son  with 
the i r  r a t e s  ~r, ~, and Eq. (2) becomes  

= E~ (1 ~ ae) 

The t e r m  ~ in the p a r e n t h e s e s  cannot be ignored  by c o m p a r i s o n  with unity. At a constant  loading ra te  

v = E ~  (1 - -  a e )  

Integrat ing,  we have 

vt = E s ( l  - -  1/2 ae) ,  or  a = E S ( t  - - x / ~ 8 )  

This  is  the equation for  a pa rabo la .  Denoting the coord ina te s  of the ve r t ex  by ~ ,  (the g r e a t e s t  pos -  
s ib le  s t r e s s ,  o r  "y ie ld  point") and 8 ,  = 1 / a  (the de format ion  when the y ie ld  point i s  reached,  o r  the de fo rma-  
t ion at  which f a i lu re  occurs) ,  we obtain an equation for  the s t r e s s e s  and deformat ions  when loading is  ins tan-  
taneous in the f o r m  

cr = e ~  ( i  - -  11~e I e , )  ( 3 )  

When loading is very slow, the rates or, ~ in (2) can be ignored in comparison with or, 8. Denoting the 
coordinates of the vertex of the parabola in this case by or*, e*=b/2, we have 

= H a  (1 - -  1/3 ~ / ~ * )  ( 4 )  
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Equations (3) and (4) are shown in Fig. 1 for  the case where e * < e , .  In general,  we can have e*_~e, 
also, and even ~ * > f , ,  but in all  cases  we must  have E -~H, which follows f rom the essential  nature of the 
concepts of instantaneous and protracted moduli. 

The differential  equation (2) finally has the form 

Let us apply an instantaneous s t ress  fro- Then, f rom (3), the deformation is 

This deformation has elast ic  e e = e0/E and plastic aP= &0-~ e components. 

If we now keep the deformation e0 constant, then ~ = 0, and f rom (5) we have the equation 

+ ~ = Heo ( i  - -  e .  / '2e*) 

Solving it, we obtain the relaxation equation 

This is the u •a l  relaxation equation for  a Kelvin body [1, 2]. 

If we keep the s t ress  f0 constant, then ~r= 0, and f rom (5) we have 

i s " I s 

The solution of this equation has the following form: 

For o- 0 >o'* 

,cEs* r O ( e o ) + ~ ( a r c t g - ~ _  
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For o'0 < or* 

F o r  e0 = o'* 

, E a *  [ ,  0 (so) 2~ (a,) / . . .  ~1 (8) . . .  ~1 (80) ~3 
, = --z-~-, I ." o-r - - - -76- -  ? ' ~ " - ~ -  - ~r~ ' -~-Ll  

/ a \2 28 c;0 6 
0 ( ~ ) = ~ - ) - 7 ~ - + ~ - ,  ~ ( 8 ) = - ~ - t ,  ,=V~ol~*-i 

__ 2"rEs* f 8, -- ~ 8, -- 8" e* -- 80 \ 
t - -  He. k s*--~ e-~-~--e0 + l n  8--*--Z~---s] 

The c r e e p  c u r v e s  a r e  shown in F i g .  2 (for e , ,  e , ,  a , ,  (r*Lken f r o m  F i g .  1). 

The  c u r v e s  1, 2, 3, 4, 5 c o r r e s p o n d  to (r0=1.4 ~*, 1.1 (~*, 1.02 o-% (r*, 0.75 (~*. 

F o r  % - ( r *  the d e f o r m a t i o n s  t end  a s y m p t o t i c a l l y  to the fo l lowing  va lue ,  de f ined  by  (4), a s  t ~ :  

- - - W  
eoo = a* (t --  / i  -- ~ - )  =~i--/~2z*[ r 

F a i l u r e  does  not  o c c u r .  When o-0>(~*, a f t e r  a l o n g e r  o r  s h o r t e r  t ime  i n t e r v a l  the d e f o r m a t i o n s  r e a c h  
the va lue  e , ,  and  the  m a t e r i a l  f a i l s .  In a c c o r d a n c e  wi th  t h i s  we can  iden t i fy  o'* wi th  the  concep t  of the l ong -  
t e r m  (p ro t r ac t ed )  r e s i s t a n c e  l i m i t .  

In a l l  c a s e s  when  o-0 >o-* the m o m e n t  of f a i l u r e  i s  when the d e f o r m a t i o n  r e a c h e s  the va lue  e , .  Howeve r ,  
a s  shown l a t e r ,  the  m o m e n t  of f a i l u r e  can  be  a n a l y z e d  d i f f e r e n t l y .  

The  r a t e  of c r e e p  d e f o r m a t i o n  i s  de f ined  f r o m  (6) a s  

Ha.a* e (8) (7) 
i ~ = 2"rE s, --  a 

G r a p h s  of  the  change  in the r a t e  of  d e f o r m a t i o n  a r e  g i v e n  in F ig .  3. C u r v e s  1, 2, 3, 4, 5 c o r r e s p o n d  
to a0 = 0.75 o-*, o-*, 1.02 o% 1.1 a*, 1.4 (7". When e0-<cr *, the r a t e  of  d e f o r m a t i o n  f a i l s  f r o m  i t s  i n i t i a l  va lue  

~0 to zero when e=eo~.  

When cr 0 > a*, the  r a t e  of d e f o r m a t i o n  f i r s t  d e c r e a s e s  and then,  when s o m e  c r i t i c a l  d e f o r m a t i o n  ~0 i s  
r e a c h e d ,  b e g i n s  to  i n c r e a s e .  The  c r i t i c a l  d e f o r m a t i o n  can  be  de f ined  f r o m  the m i n i m u m  of  Eq.  (7): 

e ~ / zo (8"1~ 28* 
a__ = 1 -  t + ~ -  ~ 8 _ _ j  - %- 

The c u r v e  jo in ing  the c r i t i c a l  v a l u e s  ~o i s  shown in F i g s .  1, 2, and 3 by  a d a s h - d o t t e d  l ine .  

F o r  s t r e s s e s  f r o m  (~0, c o r r e s p o n d i n g  to w h e r e  o and e0 co inc ide ,  o n w a r d s ,  the  d e f o r m a t i o n  i n c r e a s e s  
con t i nuous ly  f r o m  the  o n s e t  of c r e e p  to the  po in t  of f a i l u r e .  At  the m o m e n t  of f a i l u r e ,  when the l i m i t i n g  d e -  
formation ~, is reached, the rate of deformation tends to infinity. 

Since in the material tests the rate of deformation is not infinite at the moment of failure, but has a 
very large, though finite, value, after the moment of failure we can assume that the rate of deformation 
reaches a particular large value ~,. The "yield point" is not or*, but the stress o-0, <(r. corresponding to~, 
(Fig. i). The limiting deformation, the deformation at failure, is assumed to be e0*, corresponding to the 
assumed limiting rate and depending on the initial stress %. The curve of ~0, against e0, for some large 
rate of deformation ~0, is shown in Fig. 1 by a dashed line. 

We can also assume that the yield point is the point at which the rate of deformation ~0 starts to in- 
crease [2]. 

The creep and the rate of deformation curves obtained above (Figs. 2 and 3) do not contain segments 
where creep is established or the rate is constant. But the curvature of the creep lines when if0 is just 
greater than if* in the region near the point of inflection of e~ is very small and the deviation from a linear 
relation is not great. The graph giving the rate of deformation as a function of the time (Fig. 4) shows 
(curves i, 2, 3 correspond to %= 1.4 (r*, i.i ~*, 1.02 if*), that when % is slightly Larger than or*, the rate 
of deformation is virtually constant over a long time. 
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